
S H O R T  C O M M U N I C A T I O N S  627 

Acta Cryst. (1990). A46, 627-628 

Review of relationships between different strain tensors. By N. ZOTOV, Institute of Applied Mineralogy, Bulgarian 
Academy of Sciences, Rakovski Street 92, Sofia 1000, Bulgaria 

(Received 6 November 1989; accepted 7 March 1990) 

Abstract 

The relationships between different Lagrangian strain 
tensors are summarized on the basis of an illustrative tensor 
diagram emphasizing the equivalence of the definitions of 
lattice deformation in the crystallographic and the Cartesian 
reference frames. 

Introduction 

Several kinds of second-rank tensors characterizing the state 
of lattice deformation of a solid have been defined. They 
are usually based on Cartesian rather than crystallographic 
atomic coordinates. However, in a variety of physical and 
crystallochemical problems it is necessary to preserve crys- 
tallographic presentation of the lattice. 

The calculation of the components of the strain tensors 
is usually restricted to the case of small deformations and 
is carded out by means of explicit expressions in terms of 
the unit-cell parameters of the deformed and the unde- 
formed lattices (Morimoto & Tokonami, 1969; Ohashi & 
Burnham, 1973; Schlenker, Gibbs & Boisen, 1978; Hazen 
& Finger, 1982; Catti, 1985; Chanh et al., 1988). From a 
computational point of view, the use of implicit expressions 
in terms of orthogonatization matrices and metric tensors 
is more straightforward, and allows one easily to calculate 
both the linear and the finite strain tensors and to carry out 
complete error analysis. 

This indicates once more the necessity to elucidate and 
summarize the relationships between the different strain 
tensors in the crystallographic and the Cartesian reference 
frames. 

Theory 

Let us consider a crystal lattice L with covariant basis 
vectors a = (al, a2, a3) and unit-cell parameters 
(a,b,c,a,~,~). 

Let us consider further homogeneous deformation under 
which the initial lattice L transforms to another lattice L' 
with covariant basis vectors a ' =  (a~, a~, a~) and unit-cell 
parameters (a', b', c', a ' ,  fl', 3/). The matrix of the affine 
transformation can be expressed by the strain tensor S 
(Ohashi & Burnham, 1973): 

a ' =  a ( I+S) ,  (1) 

where I is the unit matrix. Evidently the tensor S is a mixed 
contracovariant tensor [Ohashi & Burnham (1973) used the 
transpose matrix of S]. 

Let O and O' be the orthogonalization matrices which 
transform L and L' into a fixed Cartesian reference frame 
with basis vector set e: 

e = aO; e = a'O'. (2) 

Comparison of (1) and (2) produces the following matrix 
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representation for S in the crystallographic reference frame: 

S = OO '-~ - I .  (3) 

In the case of homogeneous deformation the contravariant 
lattice coordinates remain unchanged (Born & Huang, 
1954). The Cartesian coordinates of a general point before 
(X) and after (X') the deformation, however, are connected 
by the general strain tensor ~ (Murnaghan, 1951; Nye, 
1957): 

x'=(I+~)x 
which may contain both deformation and rigid rotation of 
the lattice L. Taking into account the invariance of the 
contravariant coordinates with respect to lattice deforma- 
tion, it can be shown that (Catti, 1985) 

~= O ' - ~ O - I .  (4) 

The change in the distance between two arbitrary lattice 
points caused by homogeneous deformation can be 
expressed in the crystallographic reference frame by the 
finite Lagrangian strain tensor D (Sedov, 1983; Catti, 1985; 
Chanh et al., 1988; Catti, 1989): 

D = ½[g'-  g], 

where g' and g are the corresponding covariant metric 
tensors. 

With the transformation equation g' = (I + S)rg(I  + S), 
the finite Lagrangian strain tensor D can be expressed by 
S and g: 

D =½[gS+ (gS) r +STgS]. (5) 

If the deformation is small we obtain the linear Lagrangian 
strain tensor in the crystallographic reference frame: 

d =½[gS+ (gs)r] .  (6) 

It can be seen that the strain tensors D and d are related 
to the covariant tensor gS by a symmetrization operation. 
Therefore, we can interpret the gS tensor as the affine 
analogue of :the general Cartesian tensor l~: 

~j = OrgSO,  (7) 

since substituting (3) in (7) and taking into account o r g o  = 
I, we validate independently formula (4). Furthermore, we 
can obtain from above the well known definitions for the 
symmetric Cartesian tensors of linear and finite deforma- 
tions. 

Let us denote for this purpose the strain tensors D and 
d in the Cartesian reference frame by ~1 and e: 

.q = OrDO 

e = OrdO.  

If D and d are expressed by (5) and (6) it follows that 

e = ½(OrgSO + O r S r g O )  (8) 

~1 = ½ ( o r g s o + o r s r g O + o r s r g  SO)" (9) 
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From (7) it is seen that (8) and (9) can be written in the 
conventional form (Murnaghan, 1951; Nye, 1957): 

E =½(~+~-) 

n =½(~+~ T +U~). 

Finally, expressing lj in these equations by (4), it can be 
shown that (Schlenker, Gibbs & Boisen, 1978; Catti, 1985) 

= ½(O'-lO + OrO '-It) - I  

~1 = ½(OrO'-l  r O ' - l O  -- I) • 

Concluding remarks 

We can express all these matrix relations in the following 
tensor diagram which illustrates the one-to-one correspon- 
dence between the tensors gS, D and d in the crystallo- 
graphic reference frame and the tensors ~j, -q and e in the 
Cartesian reference frame: 

o 
(d, D) . . . . . . .  "* (~, n) 

4, 4, 
s s 

gS . . . . . . .  -~ 
o 

where O and S denote orthogonalization and symmetriz- 
ation operations. 

Therefore, mathematically we can visualize the 
homogeneous lattice deformation as a transformation of 
the basis vectors in the crystallographic reference frame or 
as a transformation of the atomic coordinates in the Car- 
tesian reference frame. 

We thank Dr M. Catti from the University of Milano, 
Italy, for helpful discussions on some of the questions 
concerning the present subject. 
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Abstract 

In protein crystallographic studies, the mean-square error 
at each point in the electron-density ffinction is given, in 
space group P1, by 

crZ(x)=(1/V 2) ~, F2o[1-m(h) 2] 
all h 

+ ( 1 / V  2) Y~ F2{m2(h) exp[ia2(h)] 
all h 

- m(h) 2 exp [2iaB(h)]} exp ( -4zr ih .  x). 

Here, Fo is the observed structure-factor amplitude; 
re(h) exp [/an(h)] = j" P[a (h) ]  exp (ia) da is the weighted 
phase factor in the 'best' Fourier coefficient of Blow & 
Crick; m2(h) exp (ia2) =j" P[a(h) ]  exp (2ia) da  is similar 
to a traditional second moment. P[a(h)]  da  is the probabil- 
ity that the phase angle for a given reflection has value 
between a and a +da .  

Introduction 

It is common practice in protein crystallography to make 
estimates of the error in each structure factor F(h). The 
most commonly used error models lead to an estimate of 
P[a (h)], the probability density function for the phase a (h) 
(Blow & Crick, 1959; Hendrickson & Lattman, 1970). Errors 
in the structure-factor amplitudes are generally ignored. 
P(a) is of great importance in developing correct weights 
for the structure factors in Fourier syntheses. For example, 
the commonly used 'best' Fourier coefficient of Blow & 
Crick (1959) uses the centroid-weighted phase factor given 
in (7). 

Little attention has been paid to the corresponding errors 
in the electron-density function p(x). Yet there are many 
operations, such as solvent flattening and molecular 
averaging, in which appropriate weighting could be very 
important. An objective measure of the local quality of the 
electron-density map might help to distinguish structural 

0108-7673/90/070628-03503.00 © 1990 International Union of Crystallography 


